Tag Archives: Modern Methods

Activation of Catalysts for Carbon Nanomaterial Production

The most important stage of preparing heterogeneous catalysts for carbon nanomaterial (CNM) is their activation, which is understood as a complex of physical influence on the catalytic material, which allows to significantly increase the efficiency of nanostructure synthesis.

This can be achieved by researching mechanical (dispersion) and physical (electromagnetic and ultrasonic) activation methods.

One of the most important factors defining catalyst efficiency is its granulometric composition. It is known that reduction of the particle size (less than 3 nanometers) causes capsulation inside nanotubes, while increasing it above 25 nanometers leads to uneven size distribution and defects in nanotubes. This is due to the fact the using large catalyst particles (25 to 100 nanometers) prevents carbon scattering from the surfaces where hydrocarbon decay occurs to the surfaces where carbon is deposited; as a consequence, no CNM growth occurs on such particles. Therefore, it is important to define reasonable catalyst particle size, as well as dispersion and classification methods.

Note that dispersion of catalyst microparticles causes both the reduction of size and the changes in the microstructure, e.g. destruction and reduction of pore depth, increasing the boundary of nano-seeds, where graphitized carbon is deposited.

Catalyst was activated in a drum mill and an electromagnetic vortex layer device (AVS). The distinguishing characteristic of the vortex layer in electromagnetic units is the multitude of high frequency and strength shocks, as well as friction, which not only break solid particles, but significantly activate their surfaces due to the deformation of their crystalline lattice. Enormous energy is concentrated in a volume of this process, which direct influence on the material. The influence is so high that it changes the structure as deeply as the atom’s valency shells. The process causes deep changes in the structure of the material.

Mean energy conducted to a volume of the vortex layer reaches 103 kW/m3. This is several orders of magnitude higher than in vibration mills, for instance. Besides, the energy is localized in certain areas, e.g. in the locations where the ferromagnetic particles collide, where mean power reaches even higher.

The electromagnetic vortex layer unit consisted of a process section and a control section, connected by oil tubes and a power cable. The process section consisted of a support, an enclosure, an induction coil for the rotating electromagnetic field, and a detachable operating chamber.

The catalyst activation process was performed with 1…1.5 mm by 10…15 mm PVC encapsulated ferromagnetic particles.

The chamber was loaded with 0.120 kg of the catalyst and 0.060 kg of ferromagnetic particles; retention time varied from 5 to 60 seconds. The granulometric composition of the Ni/MgO catalyst after the dispersion was done by fractionating sieve analysis. The catalyst after activation was separated into fractions and used for CNM synthesis under a unified method of testing various catalyst samples.

The results of the experiment show that the optimal duration time for the finest grinding constitutes 10 seconds, with initial catalyst particle size of 500 micron.

The observed increase of catalyst particle size after 10 or more seconds of dispersion is apparently due to the fact that with time the particles accumulate sufficient energy for spontaneous aggregation.

The analysis of the influence of the catalyst size composition on the mean output of CNM leads to the conclusion: the output increases in inverse proportion to catalyst particle size. This is due to the increased active surface of the catalyst. The experiments demonstrated that the actual method of catalyst dispersion has no significant influence on nanomaterial output.

Modern Electroplating Wastewater Neutralization

Electroplating wastewater. Electroplating facilities and shops produce toxic solid waste in the form of ions of heavy metals, acids and alkalis that can cause water pollution. It is due to the electrochemical technology requiring large volumes of water.

Generally, the decontamination and neutralization of electroplating wastewater is performed by a special unit which uses reagent purification. Despite the mainstream use of this approach, it is not without flaws. Its drawback is ineffective wastewater treatment that leads to excess of unwanted substances in the water output. Other drawbacks of the reagent method are high reagent consumption and high salt content, which do not allow the water to return back into the cycle; it also requires large bulky equipment.

Therefore, scientists continue to search for new methods to improve the efficiency of existing technologies. A solution was found by GlobeCore in its magnetic mill (AVS). These devices were developed in the last century by Logvinenko. In his book “The Intensification of Technological Processes in a Vortex Layer Unit” he demonstrated the positive results obtained with the AVS in wastewater treatment. But the low capacity of the device precluded its mass introduction into the wastewater treatment industry, because a large industrial enterprise required many AVS units for neutralization of wastewater, until recently. The newly developed high-performance devices cover the necessary volumes of wastewater treatment.

The GlobeCore design department studied the effectiveness of the AVS for cleaning and neutralizing wastewater from electroplating facilities. The data is shown in the table below.

Heavy metal wastewater treatment from galvanizing plant using AVS 100

Parameter

Rating

Maximum concentration level (European Union legislation)

Before treatment

After treatment

1

рН

1,75

6,74

6,5-8,5

2

Fe, mg/l

9,7

2,77

2-20

3

Cu, mg/l

18,29

0,65

0,1-4

4

Ni, mg/l

5,8

<0,02 (not detected)

0,5-3

5

Cr+6, mg/l

19,08

<0,005 (not detected)

0,1-0,5

The use of the AVS-100 magnetic mill in wastewater treatment from electroplating plants reduces the concentration of heavy metals to values ​​not exceeding the maximum permissible concentration accepted in the European Union. It achieves complete absence of nickel and hexavalent chromium in the treated water and shows the possibilities of future use of the vortex layer devices in countries with more stringent demands for hexavalent chromium and nickel concentrations.

Wastewater treatment is immediate and does not require high expenditure of reagents. The sedimentation with the AVS occurs much faster than with a stirrer.

Modern Methods of Wastewater Treatment

When selecting methods and processes for treatment of industrial wastewater, several factors must be considered, such as the amount and nature of waste, concentration and type of contaminants, requirements treatment results as well as the possibility of using this water in water supply systems.

In recent years, chemical, ion-exchange and electrochemical methods have come into wide use. Chemical reagent methods are mostly used for treatment of water contaminated with chrome and other heavy metals.

The idea of these methods is the use of special agents to reduce hexavalent chrome to trivalent and precipitate it. Some of the reagents are ferrous sulfate, steel scrap, sodium bisulfite etc.

Evaluating the perspectives of chemical treatment, the following disadvantages become apparent:

  • low degree of heavy metal removal;
  • high content of salts, which does not allow to use the water in return cycle;
  • irrecoverable loss of metals;
  • high consumption of reagents;
  • large equipment footprint.

Ion-exchange method is a promising approach in industrial wastewater treatment. It facilitates almost complete removal of contaminants from wastewater and allows to reuse the water. However, this method has certain limitations in removal of heavy metal salts.

This approach dominates in design of closed loop water supply systems, and allows to reduce consumption of fresh water in industrial processes. However, one of the effects of this method is the large footprint of treatment facilities.

Among the disadvantages of ion exchange are:

  • high reagent consumption for ionite regeneration;
  • large amount of salts entering water bodies along with neutralized regeneration products;
  • high water consumption on ionite processing and washing.

Electrochemical treatment has come into wider use recently. It allows to remove chrome and heavy metals from wastewater by steel electrodes. The idea is to reduce chrome by bivalent iron ions, which form from electrode dissolution. In general, the specifics of electrochemical method make it quite complex.