Tag Archives: Electroplating

Activation of Catalysts for Carbon Nanomaterial Production

The most important stage of preparing heterogeneous catalysts for carbon nanomaterial (CNM) is their activation, which is understood as a complex of physical influence on the catalytic material, which allows to significantly increase the efficiency of nanostructure synthesis.

This can be achieved by researching mechanical (dispersion) and physical (electromagnetic and ultrasonic) activation methods.

One of the most important factors defining catalyst efficiency is its granulometric composition. It is known that reduction of the particle size (less than 3 nanometers) causes capsulation inside nanotubes, while increasing it above 25 nanometers leads to uneven size distribution and defects in nanotubes. This is due to the fact the using large catalyst particles (25 to 100 nanometers) prevents carbon scattering from the surfaces where hydrocarbon decay occurs to the surfaces where carbon is deposited; as a consequence, no CNM growth occurs on such particles. Therefore, it is important to define reasonable catalyst particle size, as well as dispersion and classification methods.

Note that dispersion of catalyst microparticles causes both the reduction of size and the changes in the microstructure, e.g. destruction and reduction of pore depth, increasing the boundary of nano-seeds, where graphitized carbon is deposited.

Catalyst was activated in a drum mill and an electromagnetic vortex layer device (AVS). The distinguishing characteristic of the vortex layer in electromagnetic units is the multitude of high frequency and strength shocks, as well as friction, which not only break solid particles, but significantly activate their surfaces due to the deformation of their crystalline lattice. Enormous energy is concentrated in a volume of this process, which direct influence on the material. The influence is so high that it changes the structure as deeply as the atom’s valency shells. The process causes deep changes in the structure of the material.

Mean energy conducted to a volume of the vortex layer reaches 103 kW/m3. This is several orders of magnitude higher than in vibration mills, for instance. Besides, the energy is localized in certain areas, e.g. in the locations where the ferromagnetic particles collide, where mean power reaches even higher.

The electromagnetic vortex layer unit consisted of a process section and a control section, connected by oil tubes and a power cable. The process section consisted of a support, an enclosure, an induction coil for the rotating electromagnetic field, and a detachable operating chamber.

The catalyst activation process was performed with 1…1.5 mm by 10…15 mm PVC encapsulated ferromagnetic particles.

The chamber was loaded with 0.120 kg of the catalyst and 0.060 kg of ferromagnetic particles; retention time varied from 5 to 60 seconds. The granulometric composition of the Ni/MgO catalyst after the dispersion was done by fractionating sieve analysis. The catalyst after activation was separated into fractions and used for CNM synthesis under a unified method of testing various catalyst samples.

The results of the experiment show that the optimal duration time for the finest grinding constitutes 10 seconds, with initial catalyst particle size of 500 micron.

The observed increase of catalyst particle size after 10 or more seconds of dispersion is apparently due to the fact that with time the particles accumulate sufficient energy for spontaneous aggregation.

The analysis of the influence of the catalyst size composition on the mean output of CNM leads to the conclusion: the output increases in inverse proportion to catalyst particle size. This is due to the increased active surface of the catalyst. The experiments demonstrated that the actual method of catalyst dispersion has no significant influence on nanomaterial output.

GlobeCore extends invitation to the International Construction & Utility Equipment Exposition-2019

GlobeCore invites all businesses and parties interested in the implementation of innovative technologies to the International Construction & Utility Equipment Exposition.

This event is biannual, and this year will be hosted by Kentucky Exposition Center, Louisville, Kentucky on 1-3 October. The exhibition focuses, among other things, on electric power transmission and distribution, wastewater treatment, natural gas supply etc.

GlobeCore will be represented in the first two categories by the CMM-G designed to change oil in wind turbine gearboxes and the AVS vortex layer device. You can see these machines and speak with our specialists at booth 2240.

The CMM-G simplifies and accelerates oil change in wind turbines. To protect the new oil from instantly becoming contaminated with impurities left in the gearbox after draining the oil oil, the machine also washes the gearbox with special flushing oil. As for the vortex layer device, it increases the efficiency of the existing wastewater purification systems, reducing process duration and chemical consumption.

Looking forward to meeting you at International Construction & Utility Equipment Exposition-2019!

Modern Electroplating Wastewater Neutralization

Electroplating wastewater. Electroplating facilities and shops produce toxic solid waste in the form of ions of heavy metals, acids and alkalis that can cause water pollution. It is due to the electrochemical technology requiring large volumes of water.

Generally, the decontamination and neutralization of electroplating wastewater is performed by a special unit which uses reagent purification. Despite the mainstream use of this approach, it is not without flaws. Its drawback is ineffective wastewater treatment that leads to excess of unwanted substances in the water output. Other drawbacks of the reagent method are high reagent consumption and high salt content, which do not allow the water to return back into the cycle; it also requires large bulky equipment.

Therefore, scientists continue to search for new methods to improve the efficiency of existing technologies. A solution was found by GlobeCore in its magnetic mill (AVS). These devices were developed in the last century by Logvinenko. In his book “The Intensification of Technological Processes in a Vortex Layer Unit” he demonstrated the positive results obtained with the AVS in wastewater treatment. But the low capacity of the device precluded its mass introduction into the wastewater treatment industry, because a large industrial enterprise required many AVS units for neutralization of wastewater, until recently. The newly developed high-performance devices cover the necessary volumes of wastewater treatment.

The GlobeCore design department studied the effectiveness of the AVS for cleaning and neutralizing wastewater from electroplating facilities. The data is shown in the table below.

Heavy metal wastewater treatment from galvanizing plant using AVS 100

Parameter

Rating

Maximum concentration level (European Union legislation)

Before treatment

After treatment

1

рН

1,75

6,74

6,5-8,5

2

Fe, mg/l

9,7

2,77

2-20

3

Cu, mg/l

18,29

0,65

0,1-4

4

Ni, mg/l

5,8

<0,02 (not detected)

0,5-3

5

Cr+6, mg/l

19,08

<0,005 (not detected)

0,1-0,5

The use of the AVS-100 magnetic mill in wastewater treatment from electroplating plants reduces the concentration of heavy metals to values ​​not exceeding the maximum permissible concentration accepted in the European Union. It achieves complete absence of nickel and hexavalent chromium in the treated water and shows the possibilities of future use of the vortex layer devices in countries with more stringent demands for hexavalent chromium and nickel concentrations.

Wastewater treatment is immediate and does not require high expenditure of reagents. The sedimentation with the AVS occurs much faster than with a stirrer.

Ion Exchange in Electroplating Wastewater Treatment Processes

The problem of contamination of water bodies with biogenic elements and protection of the environment is essential. The main source of contamination, which worsens water quality and disrupts ecosystems is the release of insufficiently treated wastewater.

Municipal treatment facilities, where biological treatment of water is performed through the traditional arrangement of aerotank and a secondary settling tank, cannot ensure high enough quality of the processed water to meet the requirements sufficient for release into water bodies, due to high concentrations of various forms of nitrogen and phosphorus.

The reasons of low efficiency of treatment plants are many: design flaws, obsolete technology, incorrect operation, water and contaminant composition different from anticipated due to the development of the industry.

The solution to the problem of pollution by inefficiently treated waste is to reconstruct most of the sewage facilities using advanced technology and new wastewater treatment developments. Most attention is now directed at processes, which can simultaneously remove phosphorus and nitrogen from wastewater. Considering the environmental factors, removal of nitrogen and phosphorus using biological denitrification and biological dephosphorization.

Removal of biogenic materials from wastewater can be done in several ways. All methods are divided into anaerobic, anoxic and aerobic.

Three areas must be created in aerotanks for biological denitrification and dephosphorization:

  • aerobic (high concentration of solved oxygen), with removal aerobic removal of organics, nitrification (biooxidation of ammonia nitrogen to nitrate nitrogen) and dephosphorization (rapid consumption of phosphates by bacteria);
  • anoxic (practically no solved oxygen, but nitrates and organics are present), with denitrification;
  • anaerobic (no solved oxygen, no nitrates and nitrites, organics present), with fermentation of organics to acetate, consumed by bacteria with formation of phosphates.

Anoxic and anaerobic conditions are created by changing aeration to mechanical agitation, although such reconstruction is costly for existing facilities. There is an alternative: to create anoxic conditions in the aerotank by low (the minimum required to prevent settling of biological sludge) intensity of aeration.

For existing aerotanks in traditional aerobic mode, implementation of biological denitrification and dephosphorization while keeping treatment capacity requires intensification of purification. Increasing the rate of aerobic process, including nitrification and biooxidation of organics, can reduce the volume of aerobic zone to allocate space in the tank for anoxic and anaerobic zones.