Removal of Coke and Byproducts From Wastewater

The problem of industrial wastewater treatment to remove dissolved organic matter, such as phenols, is important and difficult at the same time, despite the large amount of domestic and imported equipment innovations.

First, deep purification of wastewater dictates special rules and conditions that are difficult to implement in practice. Second, many effective methods of deep purification require significant resources and costs, the the use of hard to find reagents with subsequent regeneration and recycling of waste. For most businesses this is difficult to perform. Therefore, the search for new effective methods of industrial wastewater treatment is ongoing.

Among the methods of destruction of organic pollutants in effluent the most common are electrochemical, electrocatalytic and reagent oxidation/reduction methods. These methods have certain advantages and disadvantages. The method most widely used is electrochemical destruction of organic substances in wastewater.

After considerable theoretical research, with the development of new low wear anode materials and new equipment designs, this method is quite promising. It uses micro-arc discharge for processing. The effectiveness of this treatment method is due to the high pressure and temperature of the discharge and significant power output.

The success of electrochemical wastewater treatment is based on the right choice of anode material, the design of the electrochemical reactor, energy consumption and the direction and selectivity of electrode processes. Most of anode materials are developed and produced specifically for electrolysis of concentrated sodium chloride solutions. These anode materials are based on RuO2 and IrO2. The platinum-titanium anodes are unsuitable for wastewater treatment. Another major group of anodes made of metal oxides (Co3O4, Fe2O3, PbO2) has high efficiency in the synthesis of sodium hypochlorite, but such anodes are not made industrially. Therefore, electrochemical treatment of wastewater from coke and by-product uses carbon, coke and carbon-graphite anodes. Their availability, ease of application and catalytic activity in low concentrations of chloride make them promising for decomposition of phenols in wastewater from coke and by-products process.

    GlobeCore

    LEAVE A MESSAGE


    Please fill this line so we can call out to you by name

    Please fill this line so we can answer your questions

    Please fill this line so we can call you back